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ABSTRACT 

In this paper, we introduce a new scheme based on the hardness of factoring integers 

of the shape 𝑁 = 𝑝2𝑞. Our scheme uses a combination of modular linear and 

modular squaring. We show that the decryption is 1-to-1 which is a great advantage 

over Rabin's cryptosystem. Its encryption speed has a complexity order faster than 

RSA and ECC. For decryption its speed is better than RSA and is marginally behind 

ECC. Constructed using a simple mathematical structure, it has low computational 

requirements and would enable communication devices with low computing power 

to deploy secure communication procedures efficiently. 

 

Keywords: Integer factorization problem, square root problem, asymmetric 

cryptosystem. 

 

 

1. INTRODUCTION 

The Rabin cryptosystem that utilizes the integer factorization 

problem of 𝑁 = 𝑝𝑞 coupled with the square root modulo problem is said to 
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be an optimal implementation of RSA with the encryption exponent 𝑒 =  2 

(Rabin (1979)). However, the situation of a 4-to-1 mapping during 

decryption has deterred it from being utilized. Mechanisms to ensure its 

possible implementation have been proposed, however the solutions either 

still have a possible decryption failure or losing their computational 

advantages. 
 

As a consequence other underlying cryptographic primitives have 

taken centre stage. The discrete log problem (DLP) and the elliptic curve 

discrete log problem (ECDLP) has been the source of security for 

cryptographic schemes such as the Diffie Hellman key exchange (DHKE) 

procedure, El-Gamal cryptosystem and elliptic curve cryptosystem (ECC) 

respectively (Diffie and Hellman (1976), Koblitz (1987)). As for the world 

renowned RSA cryptosystem, the inability to find the 𝑒-th root of the 

ciphertext 𝐶 modulo 𝑁 from the congruence relation 𝐶 ≡  𝑀𝑒(𝑚𝑜𝑑 𝑁 ) 

coupled with the inability to factor 𝑁 =  𝑝𝑞 for large primes 𝑝 and 𝑞 is its 

fundamental source of security (Rivest et al. (1978)). 
 

It has been suggested that the ECC is able to produce the same level 

of security as the RSA with shorter key length. Thus, ECC should be the 

preferred asymmetric cryptosystem from RSA (Vanstone (2006)). Hence, 

the notion “cryptographic efficiency” is conjured. That is, to produce an 

asymmetric cryptographic scheme that could produce the same security 

level at a certain key length of the traditional RSA but shorter. However, in 

certain situations where a large block needs to be encrypted, RSA is the 

better option than ECC because ECC would need more computational effort 

to undergo such a task (Scott (2008)). Thus, it is prudent to have the notion 

of “cryptographic efficiency” which is less “computationally intensive” and 

be able to securely transmit large blocks of data (when needed). 
 

In 1998 the cryptographic scheme known as NTRU was proposed 

with better “cryptographic efficiency” relative to RSA and ECC (Hoffstein 

et al. (2008) and Hermans et al. (2010)) NTRU has a textbook complexity 

order of 𝑂(𝑛2) (Fast Fourier Transform (FFT) allows for 𝑂(𝑛 log 𝑛)) for 
both encryption and decryption as compared to DHKE, ElGamal, Cramer-

Shoup, RSA and ECC (all have a textbook complexity order of 𝑂(𝑛3) or 

via FFT: 𝑂(𝑛2 log 𝑛)).  
 

From our literature review we list the following characteristics that 

must be “ideally” achieved (but not restricted to): 

 

1. Shorter key length. If possible shorter than ECC 160-bits. 
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2. Speed. To have speed of complexity order 𝑂(𝑛2) (or FFT 

implementation of 𝑂(𝑛 log 𝑛)) for both encryption and decryption. 

3. Able to increase data size to be transmitted asymmetrically. That is, 

not to be restricted in size because of the mathematical structure. 

4. To be IND-CCA2 secure in the standard model. 

5. Simple mathematical structure for easy implementation. 
 

In this paper, we show how to efficiently design an asymmetric 

cryptosystem based on the hardness of factoring integers of the shape 

𝑁 = 𝑝2𝑞 and coupled with the square root problem as one of its 

cryptographic primitive. That is, we will efficiently redesign Rabin’s 

cryptosytem that has decryption failure due to a 4-to-1 mapping. We will 

show that in our design for encryption, it does not involve “expensive” 

mathematical operation. Only basic multiplication is required neither 

without division nor modulo operation. In order to give a proper 

fundamental discussion on the merits of this new design, we will define the 

“Bivariate Function Hard Problem” (BFHP) and give an intuition on its 

existence via the RSA problem. The hardiness of factoring 𝑝2𝑞 has been 

used in many systems such as the Okamoto-Uchiyama's scheme (Okamoto 

(1998)) and the Schmidt-Samoa' system (Schmidt (2006)). Also, 

experimental results on our scheme, RSA and ECC regarding the speed of 

execution are presented. 
 

The layout of this paper is as follows. Definition of the BFHP and 

an intuition of its existence via the RSA problem will be presented in 

Section 2. The 𝐴𝐴𝛽 -BFHP will be detailed in Section 3. In this section we 

will also list previous designs to overcome the decryption failure of the 

Rabin cryptosystem for comparative purposes on the efficiently to get back 

the original message during decryption process. We will then proceed to 

define the 𝐴𝐴𝛽 -scheme in Section 4. A numerical example will also be 

given. Further analysis on the 𝐴𝐴𝛽 -BFHP is given in Section 5. These 

include the Coppersmith type attacks (Coppersmith (1996)), a Euclidean 

division attack and an analysis of a lattice based attack. Continuing in 

Section 6, we give a security reduction proof on the underlying hardness 

assumptions needed in our design. In Section 7 a table of comparison 

between the 𝐴𝐴𝛽 -scheme against RSA, ECC and NTRU is given. 

Experimental results on the speed and “data payload” between 𝐴𝐴𝛽 , RSA 

and ECC will also be produced. Finally, we shall conclude in Section 8. 
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2. BIVARIATE FUNCTION HARD PROBLEM 

The following proposition gives a proper analytical description of 

the “Bivariate Function Hard Problem” (BFHP). 

 

Proposition 1. Let 𝐹(𝑥1 , 𝑥2 , . . . , 𝑥𝑛) be a multivariate one-way function that 

maps 𝐹 ∶  ℤ𝑛 → ℤ(2𝑛−1 ,2𝑛−1)
+  . Let 𝐹1 and 𝐹2 be such functions (either 

identical or non-identical) such that 𝐴1  =  𝐹1  𝑥1 , 𝑥2 , . . . , 𝑥𝑛   ,  𝐴2  =
 𝐹2  𝑦1 , 𝑦2 , . . . , 𝑦𝑛    and gcd 𝐴1 , 𝐴2 = 1. Let 𝑢, 𝑣 ∈  ℤ(2𝑚−1 ,2𝑚 −1)

+ .  

Let 

   𝐺 𝑢, 𝑣 = 𝐴1𝑢 + 𝐴2𝑣                         (1) 

 

If at minimum 𝑚 −  𝑛 −  1 =  𝑘, where 2𝑘  is exponentially large for any 

probabilistic polynomial time (PPT) adversary to sieve through all possible 

answers, it is infeasible to determine  𝑢, 𝑣  over ℤ from 𝐺 𝑢, 𝑣 . 
Furthermore,  𝑢, 𝑣  is unique for 𝐺 𝑢, 𝑣  with high probability. 

 

Remark 1. Before we proceed with the proof, we remark here that the 

diophantine equation given by 𝐺 𝑢, 𝑣 is solved when the parameters  𝑢, 𝑣  
over ℤ are found. That is, the BFHP is solved when the parameters  𝑢, 𝑣  

over ℤ are found. 

 

Proof.  We begin by proving that  𝑢, 𝑣  is unique for each 𝐺 𝑢, 𝑣  with 

high probability. Assume there exists 𝑢1 ≠ 𝑢2 and 𝑣1 ≠ 𝑣2 such that 

 

   𝐴1𝑢1 + 𝐴2𝑣1 = 𝐴1𝑢2 + 𝐴2𝑣2                        (2) 

We will then have 

   𝑌 = 𝑣1 − 𝑣2 =
𝐴1(𝑢1−𝑢2)

𝐴2
             

 

Since gcd 𝐴1 , 𝐴2 = 1 and 𝐴2 ≈ 2𝑛 , then the probability that 𝑌 is an 

integer is 2−𝑛 . Then the probability that 𝑣1 − 𝑣2 is an integer solution not 

equal to zero is 2−𝑛  . Thus assumption is false with high probability. 
 

Next we proceed to prove that solving the Diophantine equation 

given by 𝐺 𝑢, 𝑣  is infeasible to be solved. The general solution for 𝐺 𝑢, 𝑣  
is given by 

    𝑢 = 𝑢0 + 𝐴2𝑡                         (3) 

and 

    𝑣 = 𝑣0 − 𝐴1𝑡                         (4) 
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for some integer 𝑡. To find 𝑢 within the stipulated interval 𝑢 ∈
(2𝑚−1 , 2𝑚  −  1) we have to find the integer 𝑡 such that the inequality 

2𝑚−1 <  𝑢 < 2𝑚  –  1 holds. This gives 

 

2𝑚−1 − 𝑢0

𝐴2
<  𝑡 <

2𝑚  −  1 − 𝑢0

𝐴2
. 

 

Then the difference between the upper and the lower bound is 

 

2𝑚  –  1 − 2𝑚−1

𝐴2
=  

2𝑚−1 –  1

𝐴2
≈

2𝑚−2 

2𝑛
= 2𝑚−𝑛−2 . 

 

Since 𝑚 −  𝑛 −  1 =  𝑘, where 2𝑘  is exponentially large for any 

probabilistic polynomial time (PPT) adversary to sieve through all possible 

answers, we conclude that the difference is very large and finding the 

correct 𝑡 is infeasible. This is also the same scenario for 𝑣.∎ 

 

Remark 2. In fact, since the pair  𝑢0 , 𝑣0  inherits the size of 𝐺, and from 

the equation 𝑡 =
𝑢−𝑢0

𝐴2
 , we have at minimum the value of 𝑡 ≈ 2𝑚+𝑛−𝑛 =

2𝑚 .  
 

2.1 Example 

Let 𝐴1 = 191 and 𝐴2 = 229. Let 𝑢 = 41234 and 𝑣 = 52167. Then 

𝐺 = 19821937. Here we take 𝑚 = 16 and 𝑛 = 8. We now construct the 

parametric solution for this BFHP. The initial points are 𝑢0 = 118931622 

and 𝑣0 = −99109685. The parametric general solution are: 𝑢 = 𝑢0 + 𝐴2𝑡  

and 𝑣 = 𝑣0 − 𝐴1𝑡. There are approximately 286 ≈ 29 (i.e. 
216

229
 ) values of 𝑡 

to try (i.e. difference between upper and lower bound), while at minimum 

the value is  𝑡 ≈ 216. In fact, the correct value is 𝑡 = 519172 ≈ 219. ∎ 

 

Remark 3. It has to be noted that the BFHP in the form we have described 

has to be coupled with other mathematical considerations upon 𝐹1 , 𝐹2 , 𝑢, 𝑣 

to yield practical cryptographic constructions. 

 

2.2 RSA BFHP 

Definition 4. Let the tuple (𝑀, 𝑒, 𝑑, 𝑝, 𝑞) be strong RSA parameters. Let 

𝑁 = 𝑝𝑞, 𝑒𝑑 ≡  1(𝑚𝑜𝑑 𝜑(𝑁 )) and  𝜑(𝑁 )  =  (𝑝 −  1)(𝑞 −  1).  

From 𝐶 ≡  𝑀𝑒(𝑚𝑜𝑑 𝑁 ) we rewrite as 
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    𝐶(𝑀, 𝑗) = 𝑀𝑒 − 𝑁𝑗                       (5) 

 

where 𝑗 is the number of times 𝑀𝑒  is reduced by 𝑁 until 𝐶(𝑀, 𝑗) is 

obtained. The problem of determining (𝑀, 𝑗)from equation (5) is the RSA 

BFHP. The pair (𝑀, 𝑗) is unique with high probability for each 𝐶(𝑀, 𝑗). 
 

Lemma 1.  The RSA BFHP is infeasible to be solved. 
 
Proof.  Let 𝑋 =  𝑀𝑒. From 
    𝐶(𝑋, 𝑗) = 𝑋 − 𝑁𝑗                  (6) 

 
the general solution is  

    𝑋 = 𝑋0 − 𝑁𝑡   
and 

𝑗 = 𝑗0 + 𝑡 
 

for some 𝑡 ∈  ℤ. It is easy to deduce that the correct 𝑡 belongs in the 

interval 𝑢 ∈ (2𝑘 𝑒−1 −1 , 2𝑘(𝑒−1)  −  1). Current RSA deployment has 𝑘 =
 1024. Hence, to solve the RSA BFHP is infeasible.∎ 

 

Lemma 2.  RSA problem ≡𝑝  RSA BFHP 

 

Proof.  From 𝐶 ≡  𝑀𝑒(𝑚𝑜𝑑 𝑁 ) if the RSA problem is solved then 𝑀  is 

found. Hence, 𝑗 =  
𝑀𝑒−𝐶

𝑁
  is also found. Thus, the RSA BFHP is solved. 

 

From 𝐶 𝑋, 𝑗 = 𝑋 − 𝑁𝑗, if the RSA BFHP is solved means that 
 𝑀, 𝑗  is found. Thus, the RSA problem is solved.∎ 

 

Corollary 1. Solving RSA BFHP does not imply successful factoring of 

𝑁 =  𝑝𝑞. 
 

Proof.  From Remark 1, if RSA BFHP is solved then  𝑀, 𝑗  is found. That 

is 

𝑀 =  𝐶 + 𝑁𝑗𝑒
 

 
and 

𝑗 =
𝑀𝑒 − 𝐶

𝑁
. 

 

It is obvious that the factoring of 𝑁 is yet to be obtained.∎ 

 



A New Efficient Asymmetric Cryptosystem Based on the Integer Factorization Problem of  𝑁 = 𝑝2𝑞  
 

                                Malaysian Journal of Mathematical Sciences                                           25 
 

3.  𝑨𝑨𝜷-BFHP 

We now proceed to define parameters that forms the building blocks 

of the 𝐴𝐴𝛽 -BFHP. 

Key Generation 

INPUT: The size 𝑛 of the prime numbers. 

OUTPUT: A public key tuple (𝑛, 𝐴1 , 𝐴2) and a private key tuple (𝑝, 𝑞, 𝑑). 
 

1. Generate two random and distinct 𝑛-bit strong primes 𝑝, 𝑞 such that 

𝑝, 𝑞 ≡ 3 (𝑚𝑜𝑑 4) where 2𝑛 < 𝑝, 𝑞 < 2𝑛+1. 

2. Choose random 𝑑 such that 𝑑 > (𝑝2𝑞)
4

9. 

3. Compute integer 𝑒 such that 𝑒𝑑 ≡ 1(𝑚𝑜𝑑 𝑝𝑞) and add multiples 

of 𝑝𝑞 until 23𝑛+4  <  𝑒 <  23𝑛+6 (if necessary).  

4. Set 𝐴1  =  𝑝2𝑞. We have 23𝑛  <  𝐴1  <  23𝑛+3.  

5. Set 𝐴2  = 𝑒. 

6. Return the public key tuple (𝑛, 𝐴1 , 𝐴2) and a private key pair 

(𝑝𝑞, 𝑑).  
 

We also have the fact that 22𝑛   <  𝑝𝑞 <  22𝑛+2. We also let 

24𝑛   <  𝑢 <  24𝑛+1  and  22𝑛−2   <  𝑣 <  22𝑛−1. 

 

Lemma 3. Let 𝐶(𝑢, 𝑣)  =  𝐴1𝑢 +  𝐴2𝑣
2  as stated in the above key 

generation process. This equation has a unique solution set (𝑢, 𝑣). 
 

Proof.  Suppose that there are two couples of solutions (𝑢1 , 𝑣1) and 

(𝑢2 , 𝑣2)  of the equation 𝐶 =  𝐴1𝑢 +  𝐴2𝑣
2  with (𝑣1 ≠ 𝑣2)   and 𝑣𝑖  <

 22𝑛 − 1. Then 𝐴1𝑢1  + 𝐴2𝑣1
2 = 𝐴1𝑢2  + 𝐴2𝑣2

2 . Using 𝐴1 = 𝑝2𝑞 this 

leads to  
 

 𝑢2 − 𝑢1 𝑝
2𝑞 =   𝑣1  + 𝑣2  𝑣1 − 𝑣2 𝐴2 . 

 

Since gcd(𝑝2𝑞;  𝐴2)  =  1, then 𝑝2𝑞|  𝑣1  +  𝑣2  𝑣1 − 𝑣2  and the 

prime numbers 𝑝 and 𝑞 satisfy one of the conditions 

 

{𝑞| 𝑣1  ∓ 𝑣2 
𝑝2| 𝑣1  ± 𝑣2 

or  {𝑝| 𝑣1  ∓ 𝑣2 
𝑝𝑞 | 𝑣1  ± 𝑣2 

 or  𝑝2𝑞| 𝑣1  ±  𝑣2  
 
 

Observe that 𝑝2 , 𝑝𝑞 and 𝑝2𝑞 >  22𝑛  while   𝑣1  ±  𝑣2  <  2 ∙ 22𝑛−1  =
 22𝑛 : This implies that none of these conditions is possible. Hence the 

equation 𝐶 =  𝐴1𝑢 +  𝐴2𝑣
2  has only one solution with the defined 

parameters.∎ 
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Lemma 4. Let 𝐶(𝑢, 𝑣)  =  𝐴1𝑢 +  𝐴2𝑣
2  as stated in the above key 

generation process. To determine the solution set (𝑢, 𝑣) is a BFHP. 

 

Proof.  The proof is a direct implementation of Proposition 1. 
 

We now proceed to give a proof of correctness. We will begin by 

computing 𝑊 ≡  𝐶𝑑 ≡  𝑣2 (𝑚𝑜𝑑 𝑝𝑞): Then we have to solve 𝑊 ≡
 𝑣2 (𝑚𝑜𝑑 𝑝𝑞) using the Chinese Remainder Theorem. 

 

Lemma 5. Let 𝑝 and 𝑞 be two distinct primes such that 𝑝, 𝑞 ≡ 3 (𝑚𝑜𝑑 4).  
Define 𝑥𝑝  and 𝑥𝑞  by  
 

𝑥𝑝 ≡ 𝑊
𝑝+1

4   𝑚𝑜𝑑 𝑝 , 𝑥𝑞 ≡ 𝑊
𝑞+1

4   𝑚𝑜𝑑 𝑞 . 

 

Then the solutions of the equation 𝑥2  ≡ 𝑊 (𝑚𝑜𝑑 𝑝) are ±𝑥𝑝  (𝑚𝑜𝑑 𝑝) and 

the solutions of the equation 𝑥2  ≡ 𝑊 (𝑚𝑜𝑑 𝑞) are ±𝑥𝑞  (𝑚𝑜𝑑 𝑞). 

 

Lemma 6. Let 𝑝 and 𝑞 be two distinct primes such that 𝑝, 𝑞 ≡ 3 (𝑚𝑜𝑑 4).  
Define 𝑥𝑝  and 𝑥𝑞  by  
 

𝑥𝑝 ≡ 𝑊
𝑝+1

4   𝑚𝑜𝑑 𝑝 , 𝑥𝑞 ≡ 𝑊
𝑞+1

4   𝑚𝑜𝑑 𝑞 . 

 

Define 𝑀1 ≡ 𝑞−1  𝑚𝑜𝑑 𝑝  and 𝑀2 ≡ 𝑝−1  𝑚𝑜𝑑 𝑞 . Then the solutions of 

the equation 𝑣2  ≡ 𝑊 (𝑚𝑜𝑑 𝑝𝑞) are 
 

𝑣1 ≡ 𝑥𝑝𝑀1𝑞 + 𝑥𝑞𝑀2𝑝  𝑚𝑜𝑑 𝑝𝑞 , 
 

𝑣2 ≡ 𝑥𝑝𝑀1𝑞 − 𝑥𝑞𝑀2𝑝  𝑚𝑜𝑑 𝑝𝑞 , 
 

𝑣3 ≡ −𝑥𝑝𝑀1𝑞 + 𝑥𝑞𝑀2𝑝  𝑚𝑜𝑑 𝑝𝑞 , 
 

𝑣4 ≡ −𝑥𝑝𝑀1𝑞 − 𝑥𝑞𝑀2𝑝  𝑚𝑜𝑑 𝑝𝑞 . 

 

Proof. To solve the equation 𝑣2  ≡ 𝑊 (𝑚𝑜𝑑 𝑝𝑞), we use the Chinese 

Remainder Theorem. Consider the equations 𝑥𝑝
2  ≡ 𝑊 (𝑚𝑜𝑑 𝑝)  and 

𝑥𝑞
2  ≡ 𝑊  𝑚𝑜𝑑 𝑞 . Then the solution of the equation 𝑣2  ≡ 𝑊 (𝑚𝑜𝑑 𝑝𝑞), 

are the four solutions of the four systems 
  

                                                   
   𝑣 ≡ ±𝑥𝑝  (𝑚𝑜𝑑 𝑝)

   𝑣 ≡ ±𝑥𝑞  (𝑚𝑜𝑑 𝑞)
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Define 𝑀1 ≡ 𝑞−1  𝑚𝑜𝑑 𝑝  and 𝑀2 ≡ 𝑝−1  𝑚𝑜𝑑 𝑞 . We will get explicitly 

 

𝑣1 ≡ 𝑥𝑝𝑀1𝑞 + 𝑥𝑞𝑀2𝑝  𝑚𝑜𝑑 𝑝𝑞 , 
 

𝑣2 ≡ 𝑥𝑝𝑀1𝑞 − 𝑥𝑞𝑀2𝑝  𝑚𝑜𝑑 𝑝𝑞 , 
 

𝑣3 ≡ −𝑥𝑝𝑀1𝑞 + 𝑥𝑞𝑀2𝑝  𝑚𝑜𝑑 𝑝𝑞 , 
 

𝑣4 ≡ −𝑥𝑝𝑀1𝑞 − 𝑥𝑞𝑀2𝑝  𝑚𝑜𝑑 𝑝𝑞 . 
 

It can be seen that solving 𝑣2  ≡ 𝑊 (𝑚𝑜𝑑 𝑝𝑞), will give four solutions 𝑣𝑖  

for 𝑖 =  1, 2, 3, 4 and as mentioned in Lemma 3 there is only one integer 

value 𝑣𝑖  for its corresponding 𝑢. Thus, there is no decryption failure. 
 

Remark 3. The Rabin cryptosystem is known to have decryption failure 

due to its 4-to-1 mapping. The following is a list that describes strategies to 

overcome this feature of the Rabin cryptosystem. 
 

1. Redundancy in the message (Menezes et al. (1996)). This scheme 

has a probability decryption failure of approximately 
1

2𝑙−1where 𝑙 is 

the least significant binary string of the message.  
 

2. Extra bits (Kurosawa et al. (2001)). One will send 2 extra bits of 

information to specify the square root. The encryption process 

requires the computation of the Legendre and Jacobi symbol. This 

results in a computational overhead which is much more than just 

computing a single square modulo 𝑁.  
 

3. Williams’s technique (Williams (1980)). The encryption process 

requires the encrypter to compute a Jacobi symbol. Hence, losing 

the performance advantage of Rabin over RSA (as in point no.2).  

Remark 4. The 𝐴𝐴𝛽 -BFHP is that upon obtaining 𝐶 =  𝐴1𝑢 +

 𝐴2𝑣
2 determine the pair (𝑢, 𝑣). Combining Lemma 3 and 6, it is clear that 

the 𝐴𝐴𝛽 -BFHP provides a platform for designing a scheme which employs 

the square root problem but with no decryption failure. 
 

 

4. THE 𝑨𝑨𝜷 ENCRYPTION SCHEME 

We assume that the communication is between party A (Along) and 

party B (Busu). Busu encrypts to Along. 
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4.1    Encryption 

INPUT: The public key tuple (𝑛, 𝐴1 , 𝐴2) and the message 𝑀.  

OUTPUT: The ciphertext 𝐶. 

 

1. Message is an integer 𝑀 = 24𝑛𝑚1 + 𝑚2 where we have the 

following condition for the pair  𝑚1 , 𝑚2 :  24𝑛   <  𝑚1  <  24𝑛+1 

and  22𝑛−2   <  𝑚2  <  22𝑛−1. 

2. Compute 𝐶 =  𝐴1𝑚1  +  𝐴2𝑚2
2   

3. Send ciphertext 𝐶 to Along.  

 

4.2    Decryption 

Decryption by Along is conducted in the following steps: 
 

INPUT: The private key (𝑝𝑞, 𝑑) and the ciphertext 𝐶. 

OUTPUT: The plaintext 𝑀. 
 

1. Compute 𝑊 ≡ 𝐶1𝑑(𝑚𝑜𝑑 𝑝𝑞). 

2. Proceed to solve 𝑊 as in Lemma 6 to obtain a list 𝑚2𝑖  for            

𝑖 =  1,2,3,4. 

3. For 𝑖 =  1,2,3,4 compute 𝑚1𝑖 =
𝐶−𝑚2𝑖

2𝐴2

𝐴1
. 

4. Sort the pair (𝑚1𝑗 , 𝑚2𝑗 ) for integer 𝑚1𝑗 . 

5. Return the message 𝑀 = 24𝑛𝑚1 + 𝑚2.  
 

4.3    Example 

Let 𝑛 =  16. Along will choose the primes 𝑝 =  106243 and 𝑞 =  79151. 

The public keys will be 𝐴1  =  893422852703399 and 𝐴2 =
 11179696420225111. The private keys will be 𝑝𝑞 =  8409239693 

and 𝑑 =  7674272266. The message Busu sends is formed by the integers 

𝑚1  =  34209071375236753507 and 𝑚2  =  896788005. Consequently 

we have 𝑚2
2  =  804228725911880025.  

 

Then 𝐶1  =  39554199144517456173395858868378068. To 

decrypt Along will first compute 𝑊 =  4493909651. Along will then 

obtain the following root values 𝑚21  =  7512451688, 𝑚22  =

 6327417266, 𝑚23  =  2081822427 and 𝑚24  =  896788005. 

Only 𝑚14 =
𝐶−𝑚24

2𝐴2

𝐴1
. will produce an integer value. That is 𝑚14  =

 34209071375236753507. 
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5.  FURTHER ANALYSIS ON THE 𝑨𝑨𝜷-BFHP 

5.1    Coppersmith type attack 

Theorem 1. Let 𝑁 be an integer of unknown factorization. Furthermore, let 

𝑓𝑁(𝑥) be an univariate, monic polynomial of degree 𝛿. Then we can find all 

solutions 𝑥0 for the equation 𝑓𝑁(𝑥) ≡  0(𝑚𝑜𝑑 𝑁) with 

|𝑥0| < 𝑁
1
𝛿  

 

in time polynomial in (𝑙𝑜𝑔 𝑁, 𝛿 ). 
 

Theorem 2. Let 𝑁 be an integer of unknown factorization, which has a 

divisor  𝑏 >  𝑁𝛽  . Furthermore let 𝑓𝑏(𝑥) be an univariate, monic polynimial 

of degree 𝛿. Then we can find all solutions 𝑥0 for the equation 𝑓𝑏(𝑥) ≡
 0(𝑚𝑜𝑑 𝑏) with 

|𝑥0| <
1

2
𝑁

𝛽2

𝛿
−𝜖

 

 

in time polynomial in (𝑙𝑜𝑔𝑁, 𝛿,
1

𝜖
 ). 

 

Claim 1: Attacking 𝑣 

With reference to Theorem 1, let 𝑁 =  𝐴1   =  𝑝2𝑞 and 𝑑′ ≡ 𝑒−1 (𝑚𝑜𝑑 𝑁). 

Compute 𝑊 ≡ 𝐶𝑑′ ≡ 𝑣2(𝑚𝑜𝑑 𝑝𝑞). Let 𝑓𝑁 𝑥 ≡ 𝑥2 − 𝑊 ≡  0(𝑚𝑜𝑑 𝑁). 

Hence 𝛿 = 2. Thus the root  𝑥0 = 𝑣 can be recovered if 𝑣 < 𝑁
1

2 ≈ 21.5𝑛 . 

But since 𝑣 ≈ 22𝑛 , this attack is infeasible. 
 

Claim 2: Attacking 𝑑 

With reference to Theorem 2, we begin by observing 𝑓𝑏 𝑥 ≡ 𝑒𝑥 − 1 ≡
 0(𝑚𝑜𝑑 𝑝𝑞) where 𝑝𝑞 is an unknown factor 𝑁 =  𝐴1   =  𝑝2𝑞.  

Since 𝑝𝑞 > 𝑁
2

3 we have 𝛽 =
2

3
. From 𝑓𝑏 𝑥  we also have 𝛿 = 1. By 

Theorem 2, the root 𝑥0 = 𝑑 can be found if |𝑥0| < 𝑁
4

9. But since 𝑑 > 𝑁
4

9, 

this attack is infeasible. 
 

5.2    Euclidean division attack 

From 𝐶 =  𝐴1𝑢 +  𝐴2𝑣
2 , we observe 

 

1.  
𝐶

𝐴1
 ≠ 𝑢 

2.  
𝐶

𝐴1
 ≠ 𝑣2 
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5.3    Analysis on lattice based attack 

The square lattice attack has been an efficient and effective means of attack 

upon schemes that are designed based on Diophantine equations. The 𝐴𝐴𝛽  

scheme has gone through analysis regarding lattice attacks while it went 

through the design process. Let 𝐶 =  𝐴1𝑢 +  𝐴2𝑣
2 , be an 𝐴𝐴𝛽 -BFHP 

equation. Consider the Diophantine equation 𝐴1𝑥1  +  𝐴2𝑥2 = 𝐶. Introduce 

the unknown 𝑥3 and consider the Diophantine equation 

 

𝐴1𝑥1  +  𝐴2𝑥2 − 𝐶𝑥3 = 0. 
 

Then (𝑢, 𝑣2 , 1) is a solution of the equation. Next let 𝑇 be a number to be 

fixed later. Consider the lattice ℒ spanned by the matrix: 

 

𝑀0
    =  

1 0 𝐴1𝑇
0 1 𝐴2𝑇
0 0 −𝐶𝑇

  

Observe that 

 

 𝑥1 , 𝑥2 , 𝑥3 𝑀0
    =  𝑥1 , 𝑥2 , 𝑇(𝐴1𝑥1  +  𝐴2𝑥2 − 𝐶𝑥3 ). 

 

This shows that the lattice ℒ contains the vectors  𝑥1 , 𝑥2 , 𝑇(𝐴1𝑥1  +
 𝐴2𝑥2−𝐶𝑥3) and more precisely the vector-solution 𝑉0=(𝑢, 𝑣2 , 0). 

Observe that the length of 𝑉0 satisfies 

 

∥ 𝑉0 ∥=  𝑢2 + 𝑣4 ≈ 24𝑛  
 

On the other hand, the determinant of the lattice is 𝑑𝑒𝑡(𝐿)  =  𝐶𝑇 and the 

Gaussian heuristics for the lattice ℒ asserts that the length of its shortest 

non-zero vector is usually approximately 𝜎(ℒ) where  

 

𝜎 𝐿 =  
𝑑𝑖𝑚⁡(ℒ)

2𝜋𝑒
𝑑𝑒𝑡⁡(ℒ)

1
𝑑𝑖𝑚 ⁡(ℒ) =  

3

2𝜋𝑒
(𝐶𝑇)

1
3 . 

 

If we choose 𝑇 such that 𝜎 ℒ >∥ 𝑉0 ∥, then 𝑉0 can be among the short 

non-zero vectors of the lattice ℒ. To this end, 𝑇 should satisfy 

 

  𝑇 > (
𝜋𝑒

2
)

3

2 ⋅
212𝑛

𝐶
                (7) 

 



A New Efficient Asymmetric Cryptosystem Based on the Integer Factorization Problem of  𝑁 = 𝑝2𝑞  
 

                                Malaysian Journal of Mathematical Sciences                                           31 
 

Next, if we apply the LLL algorithm to the lattice ℒ, we will find a basis 

 𝑏1 , 𝑏2 , 𝑏3  such that ∥ 𝑏1 ∥≤∥ 𝑏2 ∥≤∥ 𝑏3 ∥ and 
 

𝑏𝑖 ≤ 2
𝑛(𝑛−1)

4(𝑛+1−𝑖)𝑑𝑒𝑡⁡(ℒ)
1

(𝑛+1−𝑖), for 𝑖 = 1,2,3,4 and 𝑛 = 3 
 

For 𝑖 = 1, we choose 𝑇 such that ∥ 𝑉0 ∥≤∥ 𝑏1 ∥≤ 2
1

2 ⋅ (𝐶𝑇)
1

3. Using the 

approximation∥ 𝑉0 ∥≈ 24𝑛 , this is satisfied if 

 

𝑇 > 2−
1
2 ⋅

212𝑛

𝐶
, 

 

which follows from the lower bound of equation (7). We experimented this 

result to try to find (𝑢, 𝑣2 , 0). The LLL algorithm outputs a basis with a 

matrix in the form 
 

𝑀1
    =  

𝑎11 𝑎12 0
𝑎21 𝑎22 0
𝑎31 𝑎32 𝑇

  

 
 

If (𝑢, 𝑣2 , 0) is a short vector, then  𝑢, 𝑣2 , 0 =  𝑥1 , 𝑥2 , 𝑥3 𝑀1
     for some 

short vector  𝑥1 , 𝑥2 , 𝑥3 . We deduce the system  

 

                                                
𝑎11𝑥1 + 𝑎21𝑥2 = 𝑢

𝑎12𝑥1 + 𝑎22𝑥2 = 𝑣2  

 

from which we can deduce that 𝑥3 = 0. If we compute 
𝐴1𝑢− 𝐴2𝑣2 

𝐶
, we get 

𝑥2 = 1 for some 𝑥1. It follows that 

 

                                                
𝑎11𝑥1 + 𝑎21 = 𝑢

𝑎12𝑥1 + 𝑎22 = 𝑣2  

 

This situation is similar to the 𝐴𝐴𝛽 -BFHP. In fact it is the general solution 

for the Diophantine equation for 𝐶, where 𝑎11 =  𝐴2 and 𝑎12 =  𝐴1. 
 

5.4    Example with lattice based attack 

We will use the parameters in the earlier example. Observe the lattice ℒ 

spanned by the matrix 
 

𝑀0
    =  

1 0 𝐴1𝑇
0 1 𝐴2𝑇
0 0 −𝐶𝑇
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the length of the vector 𝑉 = (𝑢, 𝑣2 , 0) is approximately ∥ 𝑉 ∥≈
35751905917344588937. We will use 𝑇 =  220𝑛   which would result in 

the length of the vector 𝑉  is shorter than the Gaussian heuristic of the 

lattice ℒ. 

 

The LLL algorithm outputs the matrix 𝑀1
     given by: 

 

 
11179696420225111 −893422852703399 0

278692739853541622 3515767083866695990 0
213708068523785 −17078430849056  −𝑇

  

 

It follows that 

 

                  
11179696420225111𝑥1 + 278692739853541622 = 𝑢

−893422852703399𝑥1 + 3515767083866695990 = 𝑣2  

 

which is exactly the general solution for Diophantine equation of 𝐶 in 

example Section 4.3. 
 

 

6. SECURITY REDUCTION AND COMPUTATIONAL HARD 

PROBLEM OF THE 𝑨𝑨𝜷-BFHP 

The following propositions describe the security reduction and 

computational hard problems enveloping the 𝐴𝐴𝛽 -BFHP. 
 

Proposition 2. Solving 𝐴𝐴𝛽 -BFHP ≤𝑝  Factoring 𝐴1 = 𝑝2𝑞 
 

Proof. It is obvious that if one is able to factor 𝐴1 = 𝑝2𝑞 then 𝑑 can be 

computed, where 𝑒𝑑 ≡ 1(𝑚𝑜𝑑 𝑝𝑞). One then proceeds to solve 𝐶𝑑 ≡
 𝑣2(𝑚𝑜𝑑 𝑝𝑞). Since the solution set (𝑢, 𝑣) is unique, only one choice of 𝑣 

from 𝑣𝑖  where 𝑖 =  1, 2, 3, 4 will provide an integer solution for 𝑢 =
𝐶−𝑣𝑖

2𝐴2

𝐴1
.∎ 

 

7.  TABLE OF COMPARISON  

The following is a table of comparison between RSA, ECC, NTRU 

and 𝐴𝐴𝛽 . Let |𝐾| denote public key size. The 𝐴𝐴𝛽  cryptosystem has the 

ability to encrypt large data sets (i.e. 8𝑛-bits of data per transmission). The 

ratio of  𝑀: |𝐾|  suggests better economical value per public key bit being 

used. The table also states the complexity order for encryption and 
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decryption via Fast Fourier Transform (FFT). We denote 𝑛 as the minimum 

security parameter of each algorithm. 

 
TABLE 1: Comparison table for input block of length 𝑛 

 

Algorithm 
Encryption 

Speed 

Decryption 

Speed 

Security parameter 

𝑛 

Ratio 

𝑀: 𝐶 

Ratio 

𝑀: |𝐾| 

RSA 𝑂(𝑛2𝑙𝑜𝑔 𝑛) 𝑂(𝑛2𝑙𝑜𝑔 𝑛) 512 𝑛: 𝑛 2𝑛: 3𝑛 

ECC 𝑂(𝑛2𝑙𝑜𝑔 𝑛) 𝑂(𝑛2𝑙𝑜𝑔 𝑛) 160 𝑛: 2𝑛 𝑛: 𝑛 

NTRU 𝑂(𝑛 𝑙𝑜𝑔 𝑛) 𝑂(𝑛 𝑙𝑜𝑔 𝑛) 2008 Varies 𝑛: 6𝑛 

𝐴𝐴𝛽  𝑂(𝑛 𝑙𝑜𝑔 𝑛) 𝑂(𝑛2𝑙𝑜𝑔 𝑛) 512 8𝑛: 7𝑛 8𝑛: 6𝑛 

 

 

7.1  Empirical evidence 

We now produce empirical results between RSA, ECC and 𝐴𝐴𝛽  algorithms, 

which should give a non-analytical perspective of the speed each algorithm 

is capable of. Experiment was conducted on the following environment: 

Maple 13 on Windows XP Professional, Core 2 Duo, P8400 @ 2.26 GHz 

and 956 MB RAM. 

 
TABLE 2: RSA encryption and decryption time (in seconds) 

 
 

 

 

 

 
 

 

 

 

TABLE 3: ECC encryption and decryption time (in seconds) 

 

 

 

 
 

 

 

 

 

 

 
 

Key Size 

n(𝑛-bits) 

Encryption 

Speed 

Decryption 

Speed 

No. of message 

blocks (24576/ 𝑛) 

1024 0.544 0.781 24 

2048 0.836 1.394 12 

4096 1.753 3.362 6 

Key Size    

(𝑛-bits) 

Encryption 

Speed 

Decryption 

Speed 

No. of message 

blocks (24576/ 𝑛) 

160 0.416 0.854 154 

224 0.422 0.927 110 

320 0.436 0.932 101 
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TABLE 4: 𝐴𝐴𝛽  encryption and decryption time (in seconds) 

 

Length of prime 

(𝑛-bits) 

Key Size  

(6𝑛-bits) 

Encryption 

Speed 

Decryption 

Speed 

No. of message 

blocks (24576/ 𝑛) 

512 3072 0.142 0.489 8 

1024 6144 0.143 0.752 4 

2048 12288 0.144 1.578 2 

 
 

8. CONCLUSION  

Through the presentation of this work we have examined the square 

root problem that had difficulties to be executed under the circumstances of 

a 4-to-1 decryption scenario. An in depth dissection within the RSA 

problem lead us to the RSA-BFHP. We generalized the RSA-BFHP into the 

general BFHP and utilized its one-way property. The tightness of the BFHP 

definition and subsequent analytical results provided an avenue to construct 

and argue on the effectiveness of the methodology presented in this work. 

Furthermore, one cannot discount the many other possible designs based on 

the general BFHP statement. 
      

Extending the results through complexity order analysis as well as 

“real” computational experiments, it could be seen that with an encryption 

and decryption speed of 𝑂(𝑛 𝑙𝑜𝑔 𝑛) for encryption and 𝑂(𝑛2 𝑙𝑜𝑔 𝑛) for 

decryption, 𝐴𝐴𝛽  is able to provide an ideal platform for applications that 

rely on fast bulk encryption for the masses while at the same time has a 

relaxed environment for decryption. Linearly, a 1024-bit security parameter 

would allow 𝐴𝐴𝛽  encrypting 618,696,503 bits of data in 1 hour. On the 

other hand RSA would need 3.8 hours for the same amount of data. 
 

     In concluding, this result provides an avenue for more efficient 

designs to be produced. The BFHP could easily be extended to a 

multivariate situation. The opportunity to obtain a scheme that has both 

encryption and decryption having complexity order of 𝑂(𝑛2) (or best case 

implementation of 𝑂(𝑛 𝑙𝑜𝑔 𝑛)) and key length much shorter than the one 

prescribed for the integer factorization problem is there to be discovered. 
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